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therefore we cannot explain the disagreement in this 
way: We have seen that the ratio B/a 2 at the C1- ion 
seems to be a linear function of the electron number of 
the cation at 300°K. Buyers & Smith (1968) have very 
recently calculated the Debye-Waller coefficients of 
Na + and CI- in NaCI from the next-nearest-neighbour 
model (NNN) of Hardy & Karo (1966). These calcu- 
lations show that the ratio of the sodium to the 
chlorine Debye-Waller coefficient at 300 °K is increased 
and this improves the agreement between the calcu- 
lated and measured coefficients. The effect between the 
nearest neighbours could also explain the dependence 
indicated in Fig. 4. From these considerations we con- 
clude that the discrepancy between the measured and 
calculated Debye-Waller coefficients (cf. Table 4) at 
300°K is a result of the repulsive forces between the 
next-nearest neighbours not included in the theory 
(DD model of Karo & Hardy, 1963). 

This research has been financially supported by the 
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Non-crystallographic Shubnikov Groups 

BY L. L. BOYLE 
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It is argued that magnetic structures are likely to be found which will most fruitfully be explained with 
the aid of non-crystallographic magnetic point groups. The point groups are classified into families of 
'halving subgroups' and it is shown diagrammatically, with the aid of representation theory, how non- 
crystallographic Shubnikov groups can be constructed. 

Introduction 

Crystallographers who think in terms of just 32 point 
groups immediately limit the mathematical equipment 

available for interpreting the physical properties of 
crystals. The fact that only 32 point symmetries are 
admissible as units for repetition in Bravais lattices 
does not mean that other symmetries must be de- 
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stroyed completely in the crystalline state, but merely 
that they suffer at least a small distortion so that 
strictly speaking they belong to one of the allowed 
symmetries. It would be futile to attempt to classify 
the normal modes of vibration of molecules of fer- 
rocene, Fe(CsHs)z, in the solid by starting off from the 
true site symmetry C2; rather, we should consider them 
as spanning irreducible representations of the non- 
crystallographic point group Dsa and then consider 
how these representations decompose on descent in 
symmetry to C> We can say that since the distortion 
is small, the splitting of the degenerate modes will also 
be small, and we can also see which modes will mix 
in the lower symmetry. It is then easier to visualize 
the observed modes, assuming that the symmetry is 
higher. 

We should also consider the possibility that non- 
crystallographic Shubnikov groups will likewise be 
useful. The existence of Friauf polyhedra and icosa- 
hedra in complex intermetallic compounds [for an ex- 
cellent review see Samson (1968)], will surely lead to 
the study of intermetallic compounds in which there 
are observable magnetic interactions in these clusters 
of non-crystallographic symmetry within the unit cell. 
Hitherto only crystallographic Shubnikov groups have 
been discussed, and it is the purpose of this paper to 
investigate* the possibilities of inventing Shubnikov 
groups other than the 58 found by Tavger & Zaitsev 
(1956) and Zamorzaev (1953). 

Theory 

It will be convenient to distinguish at the outset be- 
tween two types of magnetic point group, the 'grey' 
(or type II) point group and the 'black and white' (or 
type III) point group. To every ordinary (or type I) 
point group, G, there corresponds a 'grey' point group 
M, given by 

M = G + R G ,  (2.1) 

where R is the operation of time-inversion and the 
summation is to be understood in the Galois sense, 
i.e. as a juxtaposition of elements. 'Black and white' 
point groups are defined by 

M =  H +  R ( G -  H)  , (2.2) 

where H is a halving subgroup of G, and G -  H means 

* The referee has kindly pointed out that the non-crystallo- 
graphic Shubnikov groups have already been independently 
deduced as subgroups of the grey group Kh + RKn by Koptsik 
(1966). This approach is different from that through represen- 
tation theory presented here, and Koptsik's diagram (Fig.2, 
p. 28) showing relationships between the limiting groups is an 
ordinary subgroup diagram not to be confused with the 
'halving subgroup diagrams' presented in this paper. In Kopt- 
sik's diagram, ordinary, grey and 'black and white' point 
groups appear together and no special significance is ascribed 
to the tie-lines. In the halving subgroup diagrams, only ordi- 
nary point groups appear and each tie-line is associated with a 
'black and white' point group. 

the set of elements of G that do not belong to H. A 
halving subgroup is defined as a subgroup of index 2 
(i.e. it has half as many elements as G) and is, there- 
fore, an invariant subgroup. We should notice from 
equations (2.1) and (2.2) that for a given group G, the 
grey group will be of twice the order of G, whilst the 
black and white group will be of the same order as G. 
The interest lies in the systematic construction (for 
Shubnikov originally only found 57) of the black and 
white groups which will henceforth be referred to as 
Shubnikov groups. 

The freshest approach is in terms of representation 
theory since, as Bertaut (1968) has shown, one can not 
only place the 58 Shubnikov groups in 1 : 1 correspon- 
dence with the 58 distinct non-totally symmetrical real 
one-dimensional representations of the ordinary point 
groups, but one can also explain non-Shubnikov mag- 
netic structures (e.g. helical orientations of spins) in 
terms of the other representations. One-dimensional 
representations are not considered distinct if they differ 
only in the orientation of the defining frame of axes 
from one another. In Table 1 are listed the fifty-eight 
crystallographic Shubnikov groups with their standard 
number, Hermann-Mauguin label, G, H and the repre- 
sentation D of G, which on descent in symmetry from 
G to H becomes the totally symmetric (i.e. unit or 
identity) representation of H. G and H are given in 
SchSnflies notation as this specifies immediately their 
generators and is more readily extendible to non- 
crystallographic groups. 

Table 1. The 58 crystallographic Shubnikov point groups 
Number Label G D H 

1 T" $2 Au C1 
2 2' Cz B C1 
3 m" Cln A'" CI 
4 2/m" C2n Au C2 
5 2"/m C2h Bu Cth 
6 2"/m" C2n Bg $2 
7 22'2' DE BI, B2, B3 C2 
8 2m'm" C2v A2 C2 
9 2'm'm C2~, BI,B2 Clh 

10 m'm" m' DEh A u D 2 
11 mmm' D2h Blu, B2u, Bau C2v 
12 m'm'm D2h B1 g, B2g, Bag C2n 
13 4' C4 B C2 
14 ~' $4 B C2 
15 42'2' D4 .42 C4 
16 4'22' D4 BI, B2 D2 
17 4/m' C4h Au C4 
18 4"/m" C4h Bu S 4 
19 4'/m C4h Bo C2h 
20 4re'm" C4v .42 Ca 
21 4'mm" C4v BI, B2 C2v 
22 ~2"m' D2a `42 S4 
23 ~'2m' D2a B1 D2 
24 ~'2'm DEa B2 C2v 
25 4/m'm'm' D4h A 1 u D4 
26 4/m'mm D4h A2u C4v 
27 4'/mmm D4h B1 o, B2o D2h 
28 4"/m" m" m D4~ B1 u, B2u D2a 
29 4/mm' m" D4n `42o C4h 
30 32' D3 A2 C3 
31 3m" C3v A2 C3 
32 g' C3h A'" C3 
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Table 1 (cont.) 
Number Label G D H 

33 ~m'2' D3n A2' Cab 
34 ~' m2' D3h A2" C3v 
35 ~'m'2 D3n A 1'" D3 
36 6' C6 B C3 
37 ~' $6 Au C3 
38 ~m" D3a A2g $6 
39 "3' m D3ct A2u C3v 
40 3"m" D3a Alu D3 
41 62'2' D6 A2 C6 
42 6'22' D6 B1,B2 D3 
43 6/m" C6h Au C6 
44 6'/m" C6~ Bg $6 
45 6"/m C6n Bu C3n 
46 6m' m' C6v A2 C6 
47 6" mm" C6v B1,B2 Car 
48 6'[mm' m D6n Blu, B2u D3n 
49 6"/m'm" m D6n Big, B2g D3a 
50 6/m'm'm' D6n . Alu D6 
51 6/m' mm D6n A2u C6v 
52 6/mm'm' D6n Azg C6n 
53 m'3 Tn Au T 
54 ;~'3'm Ta A2 T 
55 4'32' O A2 T 
56 m'3m' On Al~ 0 
57 m'3m On A2u Ta 
58 m3m" Oh A2g Tn 

In D2 and D2n, the choices {BI,B2,B3}, {Blg, B2g, B3g} and 
{Blu, B2u, Bau} correspond to choosing the {z,y,x} axes as the 
principal axes in the halving subgroups C2, C2n and C2v 
respectively. In D4 and D6 the choice {B1,B2} and in D4n and 
D6n the choices {Blg, B2g} and {Bzu, B2u} determine whether 
the {C2', C2"} axes are retained on descent to the halving sub- 
groups D2,D3,D2n, D2a, D3a, D3n. In C4v and C6v the choice 
{Bz, B2} determines whether the {av, tra} planes are retained on 
descent to C2v and C3v respectively. The choice (B1,B2} in 
C2v determines whether the reflexion plane is {trzz, tr uz} in Cln. 

(3) 

(6) 

(12) 

(24) 

Fig.2. The C 3 family of crystallographic point groups. 

T (12) 

53 54  55 
/ I \ 

r h r d 0 (24) 
\ i / 

58~  57 I / 56 

O h 148) 
Fig. 3. The T(or cubic) family of crystallographic point groups. 

.I 

C2h D2 ,C2v .C4 $4 141 

C4v q2h .D2d .,,C 4h (8) D 4 ~ 2 ,  \ 2 ,  --2, 2a/~9 / 

D4 h {16) 
Fig. 1. The C1 family of crystallographic point groups. 

Considering then a Shubnikov group in terms of two 
groups G and H we find that the 32 crystallographic 
point groups can be divided into three families, as 
shown in Figs. 1-3. The horizontal rows contain groups 
of the same order (given in parentheses on the right) 
and adjacent rows differ in order by a factor of two. 
The tie-lines relate a group G to its halving subgroups 
H above, and the groups of which it is a halving sub- 
group below. Each tie line defines a Shubnikov group 
and there are exactly 58 tie lines. It is of interest, but 
probably of no significance, that precisely half of these 
are found in the Cx family (Fig. 1). 

The key to each family is the group at the top of 
each Figure. Since it is at the top, it has no halving 
subgroups. Construction of new families will, there- 
fore, require us to find new groups without halving 
subgroups, and then the groups which they halve. We 
shall also be able to find new Shubnikov groups by 
extending the 'family trees' downwards. This is pos- 
sible indefinitely in Figs. 1 and 2, though Fig. 3 is com- 
plete. 

New families of point groups 

The problem of finding new point groups without 
halving subgroups can be reduced to that of finding 
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finite subgroups of the infinite three-dimensional rota- 
tion group K. As explained by Murnaghan (1938) this 
is tantamount to finding the solutions of the Diophan- 
tine equation 

v 1 2 
X = p - 2 + - - ,  (2.3) 

i = 1 --k-~-~ H 

where n is the order of the group. Examination of all 
the possible solutions of equation (2-3) shows that we 
can look for 

(i) a family based on the icosahedral rotation group, I; 
(ii) an infinite number of new families based on the 

axial rotation groups of odd order, Caz+~ • 

The icosahedral family shown in Fig.4 contains only 
one new Shubnikov group (which I have numbered 59) 
since one cannot have any finite pure rotation groups 
of even order greater than 60. I is, therefore, a halving 
subgroup only of Ih and this has no finite super- 
groups. 

The first new family based on an axial rotation 
group of odd order is the C5 family shown in Fig. 5. 
This family contains the point groups Dsa and Dsh 
relevant to ferrocene and ruthenocene respectively. The 
'trees' of all such families will be isomorphic with that 
of the C3 family, and it can be seen that the number 
assigned to a given C5 Shubnikov group is 30 greater 
than the number of the analogous C3 Shubnikov group. 

Extension of the crystallographic families 

Whilst Fig. 1 contains all point groups of orders 1, 2 
and 4, the improper rotation group $8 has been omitted 
from the point groups of order 8. The B representation 
of this group is reduced to the unit representation of 
C4 on descent in symmetry, and hence a new Shubnikov 
group (No. 83) may be associated with this represen- 
tation of Sa, or equivalently the tie-line between $8 and 
its halving subgroup C4. Amongst the point groups of 
order 16 omitted is D4g, the group of the square anti- 
prism, found in the puckered rings of Sa and Sea and 
the octafluoride anion [TaFa] 3-. Its one-dimensional 
representations A2, B1 and BE lead to the halving sub- 
groups Sa, D4 and C4v respectively, and the Shubnikov 
groups Nos.84-6 have been associated with these 
pairs. 

The C2x+~ families are similarly capable of infinite 
extension, but it is doubtful whether these would in- 

Table 2. Some non-crystallographic 
Shubnikov point groups 

Number Label G D H 
59 m'53 lh A, I 
60 52' D5 A2 C5 
61 5m' Csv A2 C5 
62 TO' Csn A" 6"5 
63 T0m'2" Dsn A2" C5/~ 

Table 2 (cont.) 

Number Label G D H 
64 1--0'm2' D5h A2"" Csv 
65 1--0'm'2 Dsh A 1" D5 
66 10' C10 B C5 
67 5' SI0 A,, (75 
68 5m" Dad A2g Sl0 
69 5"m Dsa A2u Csr 
70 5'm' D5 a A l u D5 
71 102'2' D10 A2 C10 
72 10'22' Dlo BI,B2 D5 
73 10/m' Clon Au Clo 
74 lO'/m' Clon Be $10 
75 lO'/m Caon Bu Can 
76 lOm'm' Cloy A2 CI0 
77 lO" mm" Cloy B], B2 Csv 
78 lO'/mm'm D l o n  BI~,B2u Dsn 
79 lO'/m" m" m Dlol~ Bla, B2a D5a 
80 10/m'm'm" D1on A I u D1o 
81 lO/m'mm D10h A2u Cloy 
82 10/mm'm" Dlon A2g Cloh 
83 8' $8 B (74 
84 g2'm' D4a A2 $8 
85 g'2m" D4a B1 D4 
86 g'2'm D4d B2 C4v 

In D10 and D10h the choices {B1,B2}, {BIa, B29} and 
{Blu, B2u} determine whether the {C2',C2"} axes are retained 
on descent to the halving subgroups Ds,Dsa, Dsh. In Cloy the 
choice {B1,B2} determines whether the {av, aa} planes are re- 
tained on descent to Csv. 

/ (60) 

I 
5 9  

I 
/h (120) 

Fig.4. The I (or icosahedral) family of non-crystallographic 
point groups. 

Ds. Csv C 

/ \ ' i  \\1 
D sh Ds,~ Dl iO ,C, ov Ctoh 

(5) 

0oi 

(20) 

{40) 

Fig. 5. The (?5 family of non-crystallographic point groups. 
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clude any physically relevant Shubnikov groups. The 
28 non-crystallographic Shubnikov groups discussed 
above are listed in Table 2. 
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in Hexagonal Close-Packed Crystals* 
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The conditions which give high-resolution monochromatization of neutrons by multiple Bragg reflec- 
tion in hexagonal close-packed crystals have been studied theoretically. The role of reflections forbidden 
by special atomic positions has been clarified, and, contrary to a previous conclusion, it is found that 
these 'forbidden' reflections may be useful for high-resolution purposes. Detailed calculations of the 
necessary crystal orientations have been carried out for beryllium, magnesium and zinc. On the basis 
of somewhat arbitrary criteria the calculations show that these crystals can reflect a total of approxi- 
mately 200 wavelengths in the range 0.7 to 4"9 A. (neutron energy 0.003 to 0" 17 eV). Several orientations 
have been found at which mosaic crystals (with a sacrifice of angular resolution) should produce beams 
that are both intense and highly monochromatic. 

Introduction 

In a previous paper (hereinafter referred to as part I) 
it was pointed out that under suitable conditions in 
certain types of perfect crystals the phenomenon of 
multiple Bragg reflection (MBR) can provide highly 
monochromatic and highly collimated (semiparallel) 
beams of neutrons and X-rays at fixed wavelengths 
(Kottwitz, 1968a). The effect depends on the simula- 
tion of a forbidden (primary) reflection by the coop- 
erative action of two allowed reflections (secondary and 
tertiary); this is the 'Umweganregung' phenomenon 
(Renninger, 1937). For each such simulation the re- 
flected wavelength has a second-order extremum at a 
definite orientation (referred to in part I as the 'oper- 
ating point') of the incident beam relative to the crystal. 
At such operating points even quite coarse external 
collimation can produce extremely high wavelength and 
angular resolution provided there is no 'interference', 
that is, provided no other simulation is close enough 
to make an impure contribution. Exploratory intensity 
measurements have been reported (Kottwitz, 1968b). 

The main purpose of this paper is to present and 
discuss calculations of interference-free operating 

* Work performed under U.S.A.E.C. Contract AT (45-1)- 
1830. 

points for three hexagonal close-packed crystals: 
beryllium, magnesium and zinc. In contrast with the 
cubic diamond structure, for which the operating 
points are independent of lattice parameters, the h.c.p. 
structure permits various c/a ratios and thus requires 
separate calculations for each crystal. These particular 
crystals were chosen because they are suitable mono- 
chromators for neutrons (Bacon, 1962). 

The general equations, nomenclature and conven- 
tions that provide the basis for this paper are identical 
with those in part I, and will be at most briefly de- 
scribed here. Attention will be concentrated on char- 
acteristics particularly relevant to the h.c.p, case. 

Forbidden reflections in h.c.p, crystals 

The h.c.p, structure (space group P63/mmc) has some 
reflections that are strictly forbidden by space-group 
symmetry; they are given by hh2hl with l odd. Calcu- 
lations of operating points have been done for 0001, 
0003, 0005, 1121, 1123 and 2241. These are the pre- 
eminent candidates for use in high-resolution mono- 
chromatization by M BR. 

The h.c.p, structure also has reflections that are only 
approximately 'forbidden' by special atomic positions; 
these are given by hkil with l odd and h - k  = 3n :/: 0. 
They are represented in our calculations by 3051, 3033 


